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A fluid of hard spheres confined between two hard walls and in equilibrium 
with a bulk hard-sphere fluid is studied using a second-order Percus-Yevick 
approximation. We refer to this approximation as second-order because the 
correlations that are calculated depend upon the position of two hard spheres 
in the confined fluid. However, because the correlation functions depend upon 
the positions of four particles (two hard spheres and two walls treated as giant 
hard spheres), this is the most demanding application of the second-order 
theory that has been attempted. When the two walls are far apart, this calcula- 
tion reduces to our earlier second-order approximation calculations of the 
properties of hard spheres near a single hard wall. Our earlier calculations 
showed this approach to be accurate for the single-wall case. In this work we 
calculate the density profiles and the pressure of the hard-sphere fluid on the 
walls. We find, by comparison with grand canonical Monte Carlo results, that 
the second-order approximation is very accurate, even when the two walls have 
a small separation. We compare with a singlet approximation (in the sense that 
correlation functions that depend on the position of only one hard sphere are 
considered). The singlet approach is fairly satisfactory when the two walls are 
far apart but becomes unsatisfactory when the two walls have a small separa- 
tion. We also examine a simple theory of the pressure of the confined hard 
spheres, based on the usual Percus-Yevick theory of hard-sphere mixtures. 
Given the simplicity of the latter approach the results of this simple (and 
explicit) theory are surprisingly good. 
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1. I N T R O D U C T I O N  

It is a pleasure to participate in this volume celebrating Bernard Jancovici's 
birthday and career. We are interested in inhomogeneous fluids; Bernard's 
analytic solution for the profile and correlation functions of the two dimen- 
sional one component plasma is one of the few exact results that are available 
to guide our thinking. Bernard is also an amiable and gracious host. 

The problem of the theory of a confined fluid is closely related to the 
problem of the theory of colloidal fluids. Colloidal fluids are of intrinsic 
scientific interest and are of great practical importance in the computer, 
chemical, food, petroleum, and environmental industries as well as in other 
industries. 

The interaction between two colloidal particles (we assume them to be 
spherical for simplicity) in a fluid is usually described by the Derjaguin- 
Landau-Verwey-Overbeek (DLVO) theory. In this theory, the potential 
interaction between the colloidal particles is sum of a long range repulsive 
electrostatic interaction and a short range attractive dispersion interaction. 
The electrostatic interaction is calculated by a simple Poisson-Boltzmann 
(PB) approximation that, in its linearized version, gives an exponential 
repulsion. Thus, the DLVO interaction is of the form 

A 
w(r) = ~- B exp[ - x ( r -  2a)], (1) 

r -  2a 

where A and B are constants whose values are not of interest here. The first 
term comes from averaging the attractive dispersion energy, r -6 ,  o v e r  the 
volume of two large spheres of radii, a. The parameter, x, is the usual 
Debye inverse screening length. 

The experiments of Israelachvili and collaborators ~ have shown that 
the DLVO theory is reliable when the separation between the particles is 
large. However, as the separation becomes smaller, additional contribu- 
tions to the interaction become apparent. Israelachvili has called these 
additional contributions the hydration force. In many cases, the hydration 
force consists of two terms. The first is an extra repulsion and the second 
is an oscillatory interaction. Henderson and Lozada-Cassou (HLC) t2-3) 
have argued that dielectric saturation in a polar solvent is responsible for 
the first term and that core effects are responsible for the second, 
oscillatory, term. In this paper, we study only the second oscillatory term. 
HLC have obtained an approximation to this term by using the hard 
sphere potential 

(oo, r < d  
u(r) = O, r > d '  (2) 
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where d is the diameter of the hard spheres, together with the results of 
Lebowitz t4) for the correlation functions of a hard-sphere mixture. One 
purpose of this note is to study the accuracy of the HLC result. 

Another approach to the study of the interaction between two 
colloidal particles is through the use of simulations or of the theory of 
inhomogeneous fluids. Ideally, one would consider colloidal particles of 
large size and very small concentration in a fluid of small particles. This is 
not so easy. To perform computer simulations for a small concentration of 
large particles would require a very large system. A very large simulation 
cell is required to accomodate the large particles. In addition, because of 
the low concentration of the large particles, a large number of particles 
(and, hence, a large cell) would be required to have a sufficient number of 
large particles to yield good statistical averages. 

In principle, the application of the theory of integral equations is not 
so formidable. One can obtain the form of the integral equations in the 
limit of very large colloidal, particles at small concentration and then solve 
this equations. Even though straightforward in principle, difficult numerical 
problems can be encountered. We are pursuing both simulations and 
integral equation theory for colloidal spheres and will report our results in 
due course. 

A more straightforward approach is to consider a fluid adsorbed into 
a slit. The fluid in the slit is in thermodynamic equilibrium with the bulk 
fluid. This problem is related to the problem of the interaction between 
large colloidal spheres in small' concentration by the Derjaguin approxima- 
tions that relates the force, F, between 'two large colloidal particles, 
assumed to be spherical and of radius a, that are present in dilute concen- 
tration in a fluid of small particles to the interaction energy, E(H), per unit 
area, A, between the walls of the slit. 

F E(H) 
- = ~  ~ ( 3 )  
a A 

The parameter, H is the separation of the two walls. 
We consi~ler the problem of a hard sphere fluid confined by two 

parallel hard walls in this publication. Thus the interaction between the 
fluid molecules is given by Eq. (2), and interaction of the hard spheres with 
the walls is given by 

oo, z<d/2 or > H - d / 2  (4) 
v(z)= 0, otherwise 

In this coordinate system, H < d corresponds to the situation where all the 
hard spheres have been "squeezed" from the pore. Not only is this problem 
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of the confined fluid of interest because of its relation to colloids, it is an 
interesting problem in its own right. Wertheim et al. ~6) have simulated this 
system. Evans and Marina Bettolo Marconi (7) have considered the thermo- 
dynamics of this system. Lozada-Cassou tS) and Zhou and Stell t9) have 
applied integral equations to this system. Very recently, G6tzelmann and 
Dietrich (GD) t~~ have studied this system by density functionals. When H 
is large, this system becomes the hard sphere fluid near a single wall 
studied by Henderson et al., ~11) Percus, (12) Sokolowski, t~3) and Plischke 
and Henderson t~4) by integral equations and by Snook and Henderson t~5) 
and J. R. Henderson and van Swol ~16) by simulations. 

2. SIMPLE HLC THEORY 

The simplest approach is to start with the well-known Ornstein- 
Zernike(OZ) relation 

ho(rl2) = c/j(rl2) + Z Pk f h/k(rl3) Cjk(r23) dr3, (5) 
k 

where to.= [r~-rj[ is the scalar distance between two particles located at r~ 
and rj and 10 k = Nk/V is the density of particles of species k, Nk, divided by 
the volume, V. The functions ho.(r ) = g j j ( r ) -1  and co.(r ) are the total and 
direct correlation functions, respectively, for a pair of particles of species 
i and j. The function ggj(r) is the radial distribution function, which is 
proportional to the probability of finding two particles of species i and 
j separated by a distance r. Equations (5) must be supplemented by a 
closure. 

If the concentration of one species, say species C, is very small, then 
Eqs. (5) become 

h(rl2) = c(rl2) + p f dr3 h(rl3) c(r23) (6) 

hc(rl2 ) = cc(rlz) + P f dr3 hc(rl3) c(r23) (7) 

and 

hcc(rlz ) = Ccc(r12) + p f dr3 hc(rz3) cc(r23) (8) 

The subscript for the fluid (or solvent), which is present in high concentra- 
tion, has been suppressed. The extension to the case where the solvent is 
a mixture is obvious. 
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Equation (6) is the usual OZ relation for the pure solvent. The 
inhomogeneous density in the vicinity of a particle of species C can be 
obtained from the solution of Eq. (7) 

p(r)  = p g c ( r ) ,  (9) 

where p = p ( ~ )  is the density of the bulk fluid. Equation (7) is the basis of 
the singlet approach of Henderson et al.t~) and Percus. ~2) The approach 
is called a singlet approach because the correlation functions depend only 
on the position of a single solvent particle. The other particle, of species C, 
is regarded as the source of an inhomogeneity. The energy of interaction 
between two particles of species C, in the presence of the solvent molecules, 
is obtained from the results of Eq. (8) 

w(r) = - k T  In gcc(r) ,  (lo) 

where k is Boltzmann's constant and T is the temperature. The force F in 
Eq. (3) is the derivative of w(r) with respect to r. 

Following Henderson et al. ~1) and Percus, t12) Eqs. (7) and (8) can be 
written the form appropriate for the case of colloid particles, where the 
particles of species C are very large. 

Using the results of Lebowitz, ~4~ HLC have obtained analytic formulae 
for the solutions of Eqs. (6-8) for large and small hard spheres. They used 
the Percus-Yevick (PY) closure, 

h(r) - c(r) = y(r)  - 1, (11) 

or, equivalently, 

c(r) = f ( r )  y(r)  (12) 

where 

f ( r )  = exp[ - f l u ( r ) ]  (13) 

is the Mayer function, 

y(r)  = exp[ flu(r) ] g(r) (14) 

and fl = 1/kT, for Eqs. (6-7) and the hypernetted chain (HNC) closure, 

h(r) - c(r) = In y(r),  (15) 
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for Eq. (8). The PY closure is used because, generally speaking, it is a good 
approximation for hard spheres. However, the use of the PY closure in 
Eq. (8) would result in an interaction energy, w(r), between large colloidal 
particles that is proportional to the logarithm of the size of the colloidal 
particles, a result in contradiction both with experiment and the Derjaguin 
approximation. The HNC closure gives the correct linear dependence of 
w(r) on the size of the colloidal particles. We refer to this mixture of PY 
and HNC closures as the HNC/PY/PY approximation. 

The HLC procedure, involving a mixture of closures, is rather ad hoc 
and has not been tested directly. The comparison with experiment is pleasing 
but there is some question about the applicablity of the hard sphere potential 
to the real fluids, especially water. A direct test of the HLC approach is 
needed. The most direct test would be a comparison of the HLC procedure 
with simulation results or highly accurate integral equations for a mixture 
of dilute large hard spheres in a solvent of small hard spheres. Such studies 
are in progress and will be reported in due course. In this note, we use 
the HLC results for w(r), together with the Derjaguin approximation, to 
obtain the pressure, the derivative of E(H), with respect to H, for a hard 
sphere fluid confined between two hard walls and in equilibrium with a 
hard sphere fluid and compare with the results of more sophisticated 
integral equations and simulations. r 

3. SINGLET AND PAIR THEORIES 

One such sophisticated integral equation is the singlet theory of 
Lozada-Cassou ts) who used Eq. (7) but took the fluid of species C to be a 
pair of large particles. These could be two large spheres but this geometry 
is rather complex; generally two flat walls are used. This is a singlet theory 
because the coordinates of only one hard sphere appear. However, the 
coordinates of three particles, one hard sphere and two walls, are involved. 
Lozada-Cassou refers to this approach as the three point extension (TPE). 
For confined hard spheres, Eq. (6) is solved with the PY closure and 
Eq. (7) is solved with either the PY or the HNC approximation. The result- 
ing scheme can be referred to as the PY/PY or the HNC/PY approxima- 
tion, respectively. At large separation of the two walls, this theory reduces 
to that of Henderson et al. ~ .  They have observed that for a fluid near a 
hard wall, the singlet approach gives a contact density that is equal to the 
geometric or arithmetic mean, respectively, of unity and the inverse of the 
compressibility of the fluid for the PY/PY and HNC/PY approximations 
rather the correct result of the pressure. This means that at large separa- 
tion, Lozada-Cassou's theory will have some error for the profiles at 
contact. However, one might hope that the situation will be no worse at 
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small separation. The excess pressure required to squeeze the confined fluid 
is 

p=kT[pc(h)-pc(~)], (16) 

where pc(H) is the contact density of the profile for wall separated by the 
distance H. One might hope that a cancellation of errors might result in 
good values of the pressure. 

The pair theory results from the second order OZ relation 

h(rl, r2)= c(rl, r2) + f dr3 p(r3) c(rx, r3) h(r2, r3), (17) 

where h( r~ , r2)=g(r~ , r2) -1  is the pair level total correlation function, 
c(rl, r2) is the pair level direct correlation function, and p(rt) is the local 
density. The exact relation between the local density and the pair correlation 
function is 

V, In p( r , )=  f dr2 p(r2)c(r,, r2)= - f  dr V2v(r2)h(r,, r2), (18) 

where v(r) is the external potential field. The PY closure supplements 
Eqs. (17) and (18) with the approximate relations 

c(rl, r2)= y(rl, r2) f ( r l ,  r2) (19) 

or, equivalently, 

h(rl, r2)= y(rl, r2)[f(rl ,  rE) + 1 ] -- 1, (20) 

where y(r~, r2) is the pair level cavity function and f(r~, r2) is the Mayer 
function. We refer to this combination of the second order OZ equation 
and the PY closure as the PY2 theory. We regard this as a pair theory 
because the coordinates of two hard spheres appear. However, the coor- 
dinates of four particles, two hard spheres and two walls, are involved. As 
a result, this is a demanding calculation. 

Substituting Eq. (19) or (20) into Eq. (17) we obtain 

Y(rl, r2)= f dr3 P(r3) Yf(rl, r3)[ Y(r2, r3) + Yf(r2, r3)], (21) 

where Y(rl, r2)= y(rl, r 2 ) -  1 and Y1(rl, r2)= y(rl, r2) f ( r l ,  r2). 
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Assuming that the external potential has the form we model adsorp- 
tion of a fluid inside the slit like pore of the width H. Equation (18) takes 
the form 

d In p(zl)/dzl = I dr2 p(z2) c(rl, r2) 

= --~ dx2 dy[h(zl =0,  Zz, rlz) +h(zl =H, Zz, r12)] (22) 

The quantities Y, Y:, g and c are now the functions of the variables 
z~, z2 and the planar distance between the points r~ and r2, R~2 = r ~ 2 -  
(z~-z2)  2. Defining the Fourier-Bessel transform with respect to horizontal 
coordinates as 

F(z1, z2, k) = f dRl2 F(ZI, Z2, Rl2 ) exp(ikRl2) 

= 2zr F(zl, z2, Rl2) Jo(kRl2) Rl2 dR12, (23) 

where Jo is a Bessel function of the first kind of the zero-th order and F 
stands for Y and for Y:, Eq. (21) can be rewritten 

k)= J" z , ,  k)l  k)+ k)] (24) 

whereas Eq. (22) becomes 

d In p(zl)/dzl = --[ Y(zl =0,  Zz, k =0)  + Yf(zl =0,  Zz, k =0)  

+ Y(zl = H, z2, k = 0 )  + Yf(zl = H, z2, k=0)-I  (25) 

Let 2i be the set of the positive roots of Jo(x)=0. From the theory of 
Bessel functions we know that the system of the functions Jo(2,,x/l), 
n = 1, 2,... is orthogonal set in the Hilbert space L2.x(0, l). These functions 
also constitute a complete system in this space. Thus, the function F(Zl, 
z2, R~2) can be expanded into a Fourier-Bessel series 

F(z,, g2, R12 ) = ~ ~n(Zl, g2) Jo(i~nR12/l) 
n>~l 

(26) 
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where 

q~,,(z~, z2)= F(z~, z2, R,2) Jo(2,,R~2/l) R~z dry2 R~zJZo(2,,R,2/l) dR,2. 
(27) 

In the above we have assumed that F(z~, Z2, R12 ) effectively vanishes for 
R12>1; this implies that the Fourier-Bessel transform need not be 
calculated for values of k more closely spaced than some finite minimum, 
about nil. 

In our numerical procedure we calculate F and P at the selected points 
Zl =i8  and z2=j8,  i, j =  1, 2,..., N. With the aid of the equations given 
above, the matrices [F0k] = [~'(z,, zj, ks)] and [Fo.,,,] = [P(z,, zj, R,,,)] are 
given by 

M - - 1  

Fu,,, = (1/z~/z) Z Po.~Jo(2s2,,,/2u) J~(2s) (28) 
s - - - 1  

and 

M - - 1  

Fus=(4rc/K z) ~ FijmJo(2s2m/2M)/J2(i].m) (29) 
m = l  

where ks= 2s//, R,,,= 2,,,l/2u, K = k  u and the summation is terminated at 
n = M. The last two relations allow efficiency in the transform calculations. 
We stress that the matrices [ F0.k] and [ Fu,,,] are symmetric with respect to 
the indices i and j. 

The integration of the inhomogeneous or nonuniform pair level Percus- 
Yevick equation requires the specification of the constant of the integration 
of Eq. (25). In the case of a fluid in contact with a single wall, the density 
profile is constant and equal to the bulk fluid density, p, if the distance 
from the surface is sufficiently large. Obviously, in the case of slit-like pores 
there exists no "bulk" part of the system within the slit. Consequently, p 
cannot be taken as the integration constant. 

However, the confined fluid is in equilibrium with the bulk system and 
the equilibrium condition requires a constant chemical potential value for 
both the confined and bulk fluids. It is well known, that the one-particle 
cavity or background correlation function, y(z), defined by p(z) = 
exp[-f ly(z)]  y(z), must satisfy, independently of H, the following sum rule 

lim y(z) = exp(flp), 
Z--~ ~00 

lim y(z + H ) =  exp(flp), 
Z ---~ OO 

(30) 
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where/~ is the chemical potential. Thus, in the case of the system that we 
are considering, the value of the background correlation function "inside 
the wall" should be taken as the integration constant. In order to remove 
possible sources of error, our strategy for the calculations is the following. 
First, we consider a wide pore, H = 10d. Within the range of the densities 
that we studied, the most inner part of the pore could be treated as a "bulk 
fluid." Consequently, for such a wide pore, we can take the value of 
p(z) =Pb as the integration constant of Eq. (9). Continuing the integration 
of this equation for z < d/2 (or for z > H - d / 2 ) ,  we evaluate the limiting 
value of the background function y(z = - o o ) .  This value is used as the 
integration constant for narrow pores. 

In most of our calculations, we used 75 terms in the Fourier-Bessel 
series (28) and (29); the grid size along the z-axis was 8 = 0.02d. However, 
for very narrow pores we reduced the grid size to 8 = 0.002d. The solutions 
of the equations were obtained using at iterational procedure. The itera- 
tions were continued until the maximum difference between two subsequent 
iterations was lower than 10 -4 . 

4. RESULTS 

We report results for the case where the bulk density is pd 3 = 0.6 since 
simulation (grand canonical Monte Carlo) results (6) are available for this 
density. Density profiles, calculated from the PY2 theory for 5 values of H, 
are shown in Figs. 1-5. The results for the largest value of H, H = 10d, are 
virtually identical to what what be obtained for a hard sphere fluid at a 
single wall and are the same as those obtained from the methods of 
Sokotowski (~3) and Plischke and Henderson. (~4) The agreement of the PY2 
results with the simulation results, also shown in Figs. 1-5, is very pleasing, 
even for small H. The density functional results (calculated for a different 
density), reported by GD, ~~ seem promising but the reported results are 
for fairly large values of H. The accuracy of their approach for small H is 
unknown. LQzada-Cassou (s) and Alejandre et a/. (17) have reported density 
profiles from the singlet theory. Except at contact, they obtain good results. 
However, they consider fairly large slits. As is seen in Fig. 1, the density 
profile is almost fiat when H is small. Since the singlet theory is poor for 
the contact value (see Fig. 6), the singlet theory will not be satisfactory for 
small slits. 

Contact values are shown it Fig. 6. The PY2 results are in quite good 
agreement with the simulation results. On the other hand, the singlet 
HNC/PY results are too small whereas the HNC/PY results are too large. 
At small H, the HNC/PY results seem not too bad. However, this is deceptive. 
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Fig. 1. Density profile of a hard sphere fluid confined by a slit formed by two parallel hard 
walls whose separation is H - -  1.2d and which is in equilibrium with a bulk hard sphere fluid 
whose density is pd 3 = 0.6. The density and distance are in units of d 3 and d, respectively. The 
circles give the simulation results (6) and curve gives the PY2 results. 
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Fig. 2. Density profile of hard sphere fluid for the same conditions as Fig. 1, except that 
H =  2d. The circles and curve have the same meaning as in Fig. 1. 
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Fig. 3. Density profile. The conditions and the meaning of the circles and curve are the same 
as Fig. 1, except that H = 3d. 
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Fig. 4. Density profile. The conditions and the meaning of the circles and curve are the same 
as in Fig. 1, except that H = 4d. 
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Fig. 5. Density profile. The conditions and the meaning of the circles and curve are the same 
as in Fig. 1, except that H---9d, which is large enough that the two walls do not interact. 
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Fig. 6. Contact density of a hard sphere fluid confined by two parallel hard walls as a func- 
tion of the separation of the walls. The conditions are the same as in Fig. 1. The circles give 
simulation results. (6) The solid and dashed curves give the PY2 and singlet theory (s) results, 
respectively. The upper dashed,curve gives the HNC/PY results and the lower dashed curve 
gives the PY/PY results. 
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Fig. 7. Excess pressure of a hard sphere fluid confined by two parallel hard walls as a func- 
tion of the separation of the walls. The conditions are the same as Fig. 1. The meaning of the 
solid and dashed curves is as in Fig. 6. The short dashed curve gives the HNC/PY/PY of 
HLC.~Ilt 

At H = 1, when all the hard spheres have been squeezed out, the HNC/PY 
result is orders of magnitude too large. 

The pressure, calculated from Eq. (16), is plotted in Fig. 7. One might 
have hoped that the errors in the singlet theory contact values might have 
subtracted out. However this is not the case. The PY2 results are very 
good. This is not surprising since the PY2 contact values are very good. 
What is perhaps surprising, and certainly pleasing, is that the simple 
HNC/PY/PY results are fairly accurate. These are obtained from the for- 
mulae of Henderson and Lozada-Cassou t21 and the Derjaguin approxima- 
tion, Eq. (3), which relates the interaction between two fiat walls to that of 
two large spheres. 

5. CONCLUSIONS 

The simple HNC/PY/PY approximation of HLC, based on the usual 
OZ relation and the Derjaguin approximation, is fairly accurate. The 
results given here are the first unambiguous test of this approach. It cer- 
tainly seems worthy of use in other applications The density functional 
approach of GD has merit but results for small H are needed before more 
can be said. 

The singlet approach is not satisfactory at small H. The statements of 
Lozada-Cassou and Alejandre et aL, based on comparisons with simulation 
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results for large H, seem too optimistic. The problem with the singlet 
approach is due the failure of this theory (with simple closures) to give 
good contact values for the density profile. For the hard sphere fluid, the 
pressure and compressibility are at least somewhat similar. This places a 
limit on the error in the singlet theory contact values. For other systems, 
such as a liquid in coexistence with its vapor, the pressure and com- 
pressibility can be very different. As a result, the singlet theory would be 
rather worse for such a system in a slit than for the confined hard sphere 
system examined here. We hasten to add that the singlet theory does deal 
with electrostatic forces correctly, at least at contact. As a result, the singlet 
approach should be quite useful for systems in which electrostatics 
dominates, for example, the primitive model electrolyte. Fortunately, this is 
Lozada-Cassou's main interest. 

The PY2 approach gives very good results but with a penalty of 
numerical complexity. An advantage of both the PY2 and the density func- 
tional approach is that both yield pair inhomogeneous functions. However, 
we do not report pair functions here and defer this issue to a later publi- 
cation. 
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